Research in our group focuses on using new spectroscopic techniques to probe chemistry at the ultimate limits of space and time. We investigate fundamental and applied issues in membrane protein biophysics, alternative energy sources, and nanotechnology, determining how local environments affect chemistry. Currently, we are working on developing a label-free, super-resolution imaging technique to monitor cells on the nanometer length scale, determining the role of vibrations in driving electron transfer reactions, and using plasmonic nanomaterials to monitor and catalyze chemical reactions. Our research is highly interdisciplinary, investigating current problems at the interface of chemistry, biology, and materials science.


Recent News and Publications

Far-Field Super-Resolution Vibrational Spectroscopy

Graefe, C. T.; Punihaole, D., Harris, C. M., Lynch, M. J., Leighton, R., Frontiera, R. R. Analytical Chemistry2019, articles ASAP


Orientation and Polarization Dependence of Ground- and Excited-State FSRS in Crystalline Betaine-30

Cassabaum, A. A., Silva, W. R., Rich, C. C., Frontiera, R. R. The Journal of Physical Chemistry C2019, articles ASAP.


Plasmon-Enhanced Chemical Conversion Using Copper Selenide Nanoparticles

Gan, X. Y.*, Keller, E. L.*, Warkentin, C. L., Crawford, S. E., Frontiera, R. R., Millstone, J. E. Nano Letters, articles ASAP.

toc cuse sers